Skip to main content

Computer Vision and Perception for Self-Driving Cars (Deep Learning Course)


Curriculum for the course Computer Vision and Perception for Self-Driving Cars (Deep Learning Course)

Learn about Computer Vision and Perception for Self Driving Cars. This series focuses on the different tasks that a Self Driving Car Perception unit would be required to do. ✏️ Course by Robotics with Sakshay. https://www.youtube.com/channel/UC57lEMTXZzXYu_y0FKdW6xA ⭐️ Course Contents and Links ⭐️ ⌨️ (0:00:00) Introduction ⌨️ (0:02:16) Fully Convolutional Network | Road Segmentation 🔗 Kaggle Dataset: https://www.kaggle.com/sakshaymahna/kittiroadsegmentation 🔗 Kaggle Notebook: https://www.kaggle.com/sakshaymahna/fully-convolutional-network 🔗 KITTI Dataset: http://www.cvlibs.net/datasets/kitti/ 🔗 Fully Convolutional Network Paper: https://arxiv.org/abs/1411.4038 🔗 Hand Crafted Road Segmentation: https://www.youtube.com/watch?v=hrin-qTn4L4 🔗 Deep Learning and CNNs: https://www.youtube.com/watch?v=aircAruvnKk ⌨️ (0:20:45) YOLO | 2D Object Detection 🔗 Kaggle Competition/Dataset: https://www.kaggle.com/c/3d-object-detection-for-autonomous-vehicles 🔗 Visualization Notebook: https://www.kaggle.com/sakshaymahna/lyft-3d-object-detection-eda 🔗 YOLO Notebook: https://www.kaggle.com/sakshaymahna/yolov3-keras-2d-object-detection 🔗 Playlist on Fundamentals of Object Detection: https://www.youtube.com/playlist?list=PL_IHmaMAvkVxdDOBRg2CbcJBq9SY7ZUvs 🔗 Blog on YOLO: https://www.section.io/engineering-education/introduction-to-yolo-algorithm-for-object-detection/ 🔗 YOLO Paper: https://arxiv.org/abs/1506.02640 ⌨️ (0:35:51) Deep SORT | Object Tracking 🔗 Dataset: https://www.kaggle.com/sakshaymahna/kittiroadsegmentation 🔗 Notebook/Code: https://www.kaggle.com/sakshaymahna/deepsort/notebook 🔗 Blog on Deep SORT: https://medium.com/analytics-vidhya/object-tracking-using-deepsort-in-tensorflow-2-ec013a2eeb4f 🔗 Deep SORT Paper: https://arxiv.org/abs/1703.07402 🔗 Kalman Filter: https://www.youtube.com/playlist?list=PLn8PRpmsu08pzi6EMiYnR-076Mh-q3tWr 🔗 Hungarian Algorithm: https://www.geeksforgeeks.org/hungarian-algorithm-assignment-problem-set-1-introduction/ 🔗 Cosine Distance Metric: https://www.machinelearningplus.com/nlp/cosine-similarity/ 🔗 Mahalanobis Distance: https://www.machinelearningplus.com/statistics/mahalanobis-distance/ 🔗 YOLO Algorithm: https://youtu.be/C3qmhPVUXiE ⌨️ (0:52:37) KITTI 3D Data Visualization | Homogenous Transformations 🔗 Dataset: https://www.kaggle.com/garymk/kitti-3d-object-detection-dataset 🔗 Notebook/Code: https://www.kaggle.com/sakshaymahna/lidar-data-visualization/notebook 🔗 LIDAR: https://geoslam.com/what-is-lidar/ 🔗 Tesla doesn't use LIDAR: https://towardsdatascience.com/why-tesla-wont-use-lidar-57c325ae2ed5 ⌨️ (1:06:45) Multi Task Attention Network (MTAN) | Multi Task Learning 🔗 Dataset: https://www.kaggle.com/sakshaymahna/cityscapes-depth-and-segmentation 🔗 Notebook/Code: https://www.kaggle.com/sakshaymahna/mtan-multi-task-attention-network 🔗 Data Visualization: https://www.kaggle.com/sakshaymahna/exploratory-data-analysis 🔗 MTAN Paper: https://arxiv.org/abs/1803.10704 🔗 Blog on Multi Task Learning: https://ruder.io/multi-task/ 🔗 Image Segmentation and FCN: https://youtu.be/U_v0Tovp4XQ ⌨️ (1:20:58) SFA 3D | 3D Object Detection 🔗 Dataset: https://www.kaggle.com/garymk/kitti-3d-object-detection-dataset 🔗 Notebook/Code: https://www.kaggle.com/sakshaymahna/sfa3d 🔗 Data Visualization: https://www.kaggle.com/sakshaymahna/l... 🔗 Data Visualization Video: https://youtu.be/tb1H42kE0eE 🔗 SFA3D GitHub Repository: https://github.com/maudzung/SFA3D 🔗 Feature Pyramid Networks: https://jonathan-hui.medium.com/understanding-feature-pyramid-networks-for-object-detection-fpn-45b227b9106c 🔗 Keypoint Feature Pyramid Network: https://arxiv.org/pdf/2001.03343.pdf 🔗 Heat Maps: https://en.wikipedia.org/wiki/Heat_map 🔗 Focal Loss: https://medium.com/visionwizard/understanding-focal-loss-a-quick-read-b914422913e7 🔗 L1 Loss: https://afteracademy.com/blog/what-are-l1-and-l2-loss-functions 🔗 Balanced L1 Loss: https://paperswithcode.com/method/balanced-l1-loss 🔗 Learning Rate Decay: https://medium.com/analytics-vidhya/learning-rate-decay-and-methods-in-deep-learning-2cee564f910b 🔗 Cosine Annealing: https://paperswithcode.com/method/cosine-annealing ⌨️ (1:40:24) UNetXST | Camera to Bird's Eye View 🔗 Dataset: https://www.kaggle.com/sakshaymahna/semantic-segmentation-bev 🔗 Dataset Visualization: https://www.kaggle.com/sakshaymahna/data-visualization 🔗 Notebook/Code: https://www.kaggle.com/sakshaymahna/unetxst 🔗 UNetXST Paper: https://arxiv.org/pdf/2005.04078.pdf 🔗 UNetXST Github Repository: https://github.com/ika-rwth-aachen/Cam2BEV 🔗 UNet: https://towardsdatascience.com/understanding-semantic-segmentation-with-unet-6be4f42d4b47 🔗 Image Transformations: https://kevinzakka.github.io/2017/01/10/stn-part1/ 🔗 Spatial Transformer Networks: https://kevinzakka.github.io/2017/01/18/stn-part2/

Watch Online Full Course: Computer Vision and Perception for Self-Driving Cars (Deep Learning Course)


Click Here to watch on Youtube: Computer Vision and Perception for Self-Driving Cars (Deep Learning Course)


This video is first published on youtube via freecodecamp. If Video does not appear here, you can watch this on Youtube always.


Udemy Computer Vision and Perception for Self-Driving Cars (Deep Learning Course) courses free download, Plurasight Computer Vision and Perception for Self-Driving Cars (Deep Learning Course) courses free download, Linda Computer Vision and Perception for Self-Driving Cars (Deep Learning Course) courses free download, Coursera Computer Vision and Perception for Self-Driving Cars (Deep Learning Course) course download free, Brad Hussey udemy course free, free programming full course download, full course with project files, Download full project free, College major project download, CS major project idea, EC major project idea, clone projects download free

Comments

Popular posts from this blog